Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension
نویسندگان
چکیده
Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts.
منابع مشابه
Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension
Mechanosensitive ion channels are force-transducing enzymes that couple mechanical stimuli to ion flux. Understanding the gating mechanism of mechanosensitive channels is challenging because the stimulus seen by the channel reflects forces shared between the membrane, cytoskeleton and extracellular matrix. Here we examine whether the mechanosensitive channel PIEZO1 is activated by force-transmi...
متن کاملPiezo1
Piezo ion channels have been found to be essential for mechanical responses in cells. These channels were first shown to exist in Neuro2A cells, and the gene was identified by siRNAs that diminished the mechanical response. Piezo channels are approximately 2500 amino acids long, have between 24-32 transmembrane regions, and appear to assemble into tetramers and require no other proteins for act...
متن کاملChemical activation of the mechanotransduction channel Piezo1
Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ~3.25 million compounds using a cell-based fluorescence assay and identified a ...
متن کاملSynergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage.
Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconst...
متن کاملPiezo1 plays a role in erythrocyte volume homeostasis.
Mechanosensitivity is an inherent property of virtually all cell types, allowing them to sense and respond to physical environmental stimuli. Stretch-activated ion channels represent a class of mechanosensitive proteins which allow cells to respond rapidly to changes in membrane tension; however their identity has remained elusive. The piezo genes have recently been identified as a family of st...
متن کامل